Exercise 13

In Exercises 13-16, show that the given function $u(x)$ is a solution of the corresponding Volterra integro-differential equation:

$$
u^{\prime}(x)=2+x+x^{2}-\int_{0}^{x} u(t) d t, u(0)=1, u(x)=1+2 x
$$

Solution

Substitute the function in question on both sides of the integro-differential equation.

$$
\begin{aligned}
\frac{d}{d x}(1+2 x) & \stackrel{?}{=} 2+x+x^{2}-\int_{0}^{x}(1+2 t) d t \\
2 & \stackrel{?}{=} 2+x+x^{2}-\left.\left(t+t^{2}\right)\right|_{0} ^{x} \\
& \stackrel{?}{=} 2+x+x^{2}-\left(x+x^{2}\right) \\
& =2
\end{aligned}
$$

Therefore,

$$
u(x)=1+2 x
$$

is a solution of the Volterra integro-differential equation.

